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Abstract—Over seventy years of research into human behavior
in the context of automation shows that humans naturally over-
trust reliable automation after relinquishing control for pro-
longed periods of time. This paper aims to show, by using an anal-
ysis of real-world driving in Autopilot-equipped Tesla vehicles,
that patterns of decreased vigilance, while common in human-
machine interaction paradigms, are not inherent to Al-assisted
driving (also referred to as “Level 2”, “semi-autonomous”, and
“partially automated” driving). One implication of this is that
it may be possible to design Al-assisted vehicles that rely on
humans for supervision in a way that will not necessarily lead
to over-trust and significant vigilance decrement. We propose a
measure of “functional vigilance” that conceptualizes vigilance
when drivers are allowed to self-regulate by choosing when and
where to leverage the capabilities of automation and when to
perform the driving task manually. The central observations in
the dataset is that drivers use Autopilot for 34.8% of their driven
miles, and yet appear to maintain a relatively high degree of
functional vigilance. These observations are based on annotation
of 18,928 disengagements of Autopilot that quantify the ability of

drivers to respond to challenging driving situations during Al-
assisted driving. We discuss limitations and implications of this
work including that these findings (1) cannot be directly used to
infer safety as a much larger dataset would be required for crash-
based statistical analysis of risk, (2) may not be generalizable to a
population of drivers nor Autopilot versions outside our dataset,
(3) do not include challenging scenarios that did not lead to
Autopilot disengagement, (4) are based on human-annotation of
critical signals, and (5) do not imply that driver attention manage-
ment systems are not potentially highly beneficial additions to the
functional vigilance framework for the purpose of encouraging
the driver to remain appropriately attentive to the road. The
authors are highly cognizant that there are significant nuances in
the design, analysis, and interpretation of this work. It is our hope
that it will encourage serious discussion and further investigation
of how seemingly subtle features of Al-assisted system design and
implementation may influence the extent to which humans are
able to sustain appropriate collaborative engagement with such
technology.
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(a) Classical vigilance framework.

(b) Functional vigilance framework.

Fig. 1: Two approaches to measuring vigilance of human-in-the-loop automation systems. The critical distinction is that in
the classical approach, the operator does not have the option to choose when and where to engage in the monitoring task and
instead must always be in the supervisory role. On the other hand, in the functional approach, the operator can choose to
switch between task performance and machine monitoring at any time.
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I. INTRODUCTION

The twenty first century may very well be defined by global
proliferation of artificial intelligence and robotics systems that
directly interact with and are responsible for the well-being
of human beings. Successful utilization of AI and robotics
may venture out of well-lit, well-controlled factory floors
and the digital constraints of cyberspace, and enter at a
mass-scale into our homes (i.e., personal robotics), our skies
(i.e., delivery drones), and our transportation network (i.e.,
autonomous vehicles). What is not well understood about
this new world is how ready the underlying algorithms are
to perceive, reason about, and act in the world they enter.
No more is this true than with autonomous vehicles, where
each artificial intelligence system is directly responsible for
the comfort and safety of vehicle occupants and surrounding
road users. The question, therefore, is how can that integration
of Al into society save lives, not take them, while enhancing
the overall driving experience. Central to this question is the
understanding of human behavior in the context of Al-assisted
driving, measured by the ability of the driver to maintain
vigilance, to gain understanding of system limitations, and to
balance trust and risk in a world full of uncertainty where a
split-second gap in judgment may be catastrophic.

The focus of this work is Tesla Autopilot, a Level 2 [1]
driving system capable of automated longitudinal and lateral
control under supervision of the human driver. Taxonomization
of automation capabilities have received significant efforts in
recent years, resulting in a number of terms used for systems
with capabilities similar to Autopilot. In the popular press
and in robotics, machine learning, and Al communities the
most prevalent term is ‘“‘semi-autonomous” systems [2]. In
automotive standard bodies and human factors communities,
the most prevalent term is “partially automated” [3, 4]. The
Society of Automotive Engineers (SAE) refers to Level 2
systems as “partial driving automation” [1]. Some prominent
activists, members of industry, and vehicle assessment agen-
cies (e.g., Euro NCAP) argue that the use of words such as
“autonomous” and “automated” as part of the terminology
(or the term “Autopilot” itself) is irresponsible as it leads
to consumer misunderstanding of the limitations of the tech-
nology [5, 6]. Research on a range of actual and invented
feature names, including Autopilot, has shown a connection
between the phrase “auto” and expectations of capabilities
exceeding that of the actual technologies [7]. In order to avoid
misinterpretation of system capabilities under investigation in
this work, we avoid the words “autonomous” and “automated”
and instead use the term “Al-assisted” driving that clarifies
that Autopilot is assistive not fully autonomous technology,
and thus requires human supervision at all times.

Due to its scale of deployment and individual utilization,
Autopilot serves as perhaps the currently best available op-
portunity to study and understand human interaction with Al-
assisted vehicles “in the wild.” Tesla Autopilot is a system that
uses a mixture of vision, radar, ultrasonic, and GPS sensors
as input to control both longitudinal and lateral movement.

To date, Tesla vehicles have driven over 1 billion miles
under the control of Autopilot [8] since its activation on
Tesla vehicles in October 2015. And yet, even with so many
miles traveled, we know very little about when, where, and
how the human supervisors elect to utilize the automation
capabilities of the system. A few anecdotal accounts published
on social media, often for the purpose of entertainment, and
small scale studies [9, 10] have begun to detail perceptions
of and actual system use and behavior. However, such small-
scale experimental studies and limited observational efforts
may not provide generalizable insights into human behavior
in the naturalistic driving context.

We aim to move away from anecdotal reports and toward
more objective, representative analysis of real-word use. While
the ultimate test of an autonomous or Al-assisted driving
system will be a statistical consideration of safety over tens
or hundreds of billions of miles traveled [11], naturalistic
driving research can now begin investigating and identify
both promising and concerning trends in drivers’ behavioral
patterns in the context of Autopilot.

To this end, we propose a measure of driver “functional
vigilance” that incorporates both the ability of the driver to
detect critical signals and the implicit ability of the driver
to self-regulate when and where to switch from the role of
manually performing the task to the role of supervising the
automation as it performs the task. See Fig. 1 for a diagram
contrasting classical and functional vigilance frameworks, and
SIII-A for a detailed discussion of the concept. In the context
of vehicle automation that evaluates the driver’s ability to
respond to challenging driving situations, we focus on “tricky
situations”, a term that refers to scenarios that, if not attended
to, may lead to property damage, injury, or death. We use
this measure to evaluate 8,682 Autopilot disengagements in
response to tricky situations, and show that drivers in our
dataset remain vigilant (as defined below) when they elect to
use Autopilot. They choose to do so for 34.8% of total miles
driven. This choice of when and where to use Autopilot is
the additional element that highlights the difference between
the classical study of vigilance and a “functional” study of
vigilance. Functional vigilance incorporates both the ability
of the driver to detect critical signals and the implicit ability
of the driver to be strategic about when and where to use
Autopilot.

This work takes an objective, data-driven approach toward
evaluating functional vigilance in real-world Al-assisted driv-
ing by analyzing naturalistic driving data in Tesla vehicles
that were instrumented for data collection as part of the MIT
Autonomous Vehicle Technology Study (MIT-AVT) [12].

The two main results of this work are that (1) drivers elect to
use Autopilot for a significant percent of their driven miles and
(2) drivers do not appear to over-trust the system to a degree
that results in significant functional vigilance degradation in
their supervisory role of system operation. In short, in our
data, drivers use Autopilot frequently and remain functionally
vigilant in their use. The quantitative summary of the latter is
presented in Table L.



These results are surprising as they do not align with the pre-
diction of prior literature on human monitoring of automation,
which predicts significant degradation of vigilance as covered
in §II. In §III-B, we describe when and how Autopilot is used
by drivers in our study. In §III-A, we define the measure
of functional vigilance and report this measure for 15,874
human-initiated and 128 machine-initiated disengagements of
Autopilot. Finally, in §V, we present limitations of the work,
and provide a perspective that the imperfection of the system is
counter-intuitively central to maintaining functional vigilance
and limiting over-trust of the system.

Finally, given the potentially impactful nature of the find-
ings, it is important to emphasize, as stated previously, that
these findings (1) cannot be directly used to infer safety
as a much larger dataset would be required for crash-based
statistical analysis of risk, (2) may not be generalizable to
a population of drivers nor Autopilot versions outside our
dataset, (3) do not include challenging scenarios that did not
lead to Autopilot disengagement, (4) are based on human-
annotation of critical signals, and (5) do not imply that
driver attention management systems are not potentially highly
beneficial additions to the functional vigilance framework for
the purpose of encouraging the driver to remain appropriately
attentive to the road.

II. RELATED WORK

Human vigilance in the context of monitoring automation
has been studied for over 70 years [13]. The central measure
of interest is the “vigilance decrement” which is the decrease
in a human being’s ability to remain vigilant for critical signals
over time, as indicated by a decline in the rate of the correct
detection of signals [14]. Taken together, this body of work
forms a definitive set of findings which identify the conditions
under which human over-trust automation systems that are
highly reliable, lose vigilance during supervision of these
systems, and fail to detect safety-critical events at rates higher
than when performing the task themselves. These findings
form a foundation from which to build our understanding of
vigilance in the context of Al-assisted driving. In this section,
we review select key findings from three areas of research: (1)
fundamental vigilance concepts and studies, (2) vigilance in
aviation, and (3) vigilance studies in driving simulators. This
review of the literature provides a foundation upon which our
framework of functional vigilance as described in §III-A is
developed.

A. Fundamental Vigilance Concepts and Studies

The bulk of the work on vigilance decrement over the
past 70 years has been conducted under controlled conditions
such that individual variables affecting vigilance could be
rigorously studied. These experiments were conducted both in
the laboratory and in the field. Applications span a wide range
of domains from general visual search tasks [13] to medical
diagnosis tasks [15] to agriculture [16]. The majority of results
across studies observe that humans make errors on tasks that
require prolonged attention. These observations carry over to

the task of monitoring and supervising automation, finding that
increases in level of automation correlate with an increase in
vigilance decrement [17, 18].

Typically, within automation, the human supervisor is ex-
pected to monitor the automation for failures in its perfor-
mance that would require the human operator to intervene or
take action of some type. Within the driving context, however,
the situation is more complicated. For Al-assisted driving at
SAE Level 1 (L1) or Level 2 (L.2), the human supervisor needs
to monitor automation status and performance as shown in
Fig. 1. In addition, they need to monitor the driving scene
because object and event detection remains the responsibility
of the human at these levels of automation. In real-world
driving, the process of “monitoring” is not as simple as looking
at a sequence of novel images and attempting to detect an
anomaly. Monitoring involves integrating spatial and temporal
context from all the senses and across time from seconds to
years, including prior interaction with the current driving scene
and driving scenes similar to it in some semantic or actionable
way.

Research in the scientific literature has shown that highly
reliable automation systems can lead to a state of “automa-
tion complacency” in which the human operator becomes
satisfied that the automation is competent and is controlling
the vehicle satisfactorily. And under such a circumstance,
the human operator’s belief about system competence may
lead them to become complacent about their own supervisory
responsibilities and may, in fact, lead them to believe that their
supervision of the system or environment is not necessary. This
can, in turn, mean that the quality of human monitoring may
decline below some standard level of performance and may
lead to missed system failures or delayed responses to a system
failure [19]. In the context of driving, this can additionally
include missed or delayed responses to objects and events in
the driving environment (e.g., missed detections of unexpected
pedestrians or bicyclists intruding into the vehicle’s path of
travel; missed detections of unexpected braking of a lead
vehicle, missed detections of unexpected behavior of vehicles
in adjacent lanes, etc.)

The extent of degradation in critical event detection that oc-
curs under complacency is affected by several factors including
the reliability of system automation and the total workload
that is being carried by the human operator at the time.
Parasuraman et al. [20] found that the mean detection rate
of automation failures was markedly higher under conditions
where the reliability of the system varied (82%) vs. under
conditions where the system’s reliability was constant (33%).
Additionally, complacency and vigilance decrements are more
often found under conditions where task load is high. This is
particularly true where multitasking is present, and thus there
are competing tasks to which the human operator’s attention
may be allocated when they become complacent about the
automation.

The corollary to increased complacency with highly reliable
automation systems is that decreases in automation reliability
should reduce automation complacency, that is, increase the



detection rate of automation failures. Bagheri and Jamieson
[21] did find that participants detected significantly more
automation failures at low rather than at high automation
reliability. We explore this concept as a possible explanation
for the observed results in §V-A2.

In the foundational studies on automation complacency
done by Parasuraman and colleagues, the rate of automation
failures which humans were trying to detect was relatively
high — for example, 12% in the “high” reliability condition
[20] which corresponds to a rate of about 1 every 3.5 minutes.
However, Parasuraman and Manzey [19] described this as a
drawback of studies published in the literature, because they
felt that such high failure rates were unrepresentative of any
real automated system or at least unrepresentative of any
system that human operators would use.

Wickens & Dixon [22] hypothesized that when the reliabil-
ity level of an automated system falls below some limit (which
the suggested lies at approximately 70% with a standard error
of 14%) most human operators would no longer be inclined
to rely on it. However, they reported that some humans do
continue to rely on such automated systems. Further, May
[23] also found that participants continued to show compla-
cency effects even at low automation reliability. This type of
research has led to the recognition that additional factors like
first failure, the temporal sequence of failures, and the time
between failures may all be important in addition to the basic
rate of failure.

B. Vigilance in Real-World Aviation

The focus of our work is Al-assisted driving in the real
world. This problem has not been extensively studied to date,
except in the simulator (see §II-C). The closest domain of
human-machine interaction that has been studied in the real-
world is automation in aviation. Much like with driving,
the bulk of the work in aviation is in the simulator [24].
However, observational reports on real-world general aviation
have been published [25]. The findings generally suggest that
the vigilance decrement and human tendency to over-trust is
ubiquitous. However, such decrement can be alleviated in part
through a number of countermeasures including training, reg-
ular briefings, effective communication with the crew, review
and modification of plans [26].

C. Vigilance in Driving Simulators

A large number of studies of Al-assisted and fully au-
tonomous driving have been conducted in driving simulators
[27, 28]. Many have observed a vigilance decrement as
measured by the driver’s ability to respond to challenging
situations. Greenlee et al. [29] showed that in a 40 minute
automated drive in a simulator, hazard detection rate de-
clined precipitously, and reaction times slowed as the drive
progressed. Carsten et al. [30] showed that in a 45 minute
automated drive in a simulator, drivers shifted attention away
from the driving task and tended to use the automation support
to enable engagement in nondriving tasks. Automated driving

in these studies refers to longitudinal and lateral control akin
to the capabilities of Autopilot.

Several dozen papers of such experiments in driving simu-
lators have been published over the past 10 years [31]. Several
of these studies explore what factors contribute to inattention
and vigilance decrement in the driving simulator, and many
find that there is in fact a significant vigilance decrement. The
degree to which these studies of automation generalize to the
real world is unknown [32].

To move beyond this limitation, we examine the functional
vigilance of drivers operating their Tesla vehicles in the wild,
as they naturally drive. Data acquired from their driving allows
us to examine tricky situations and critical events that arise,
identify those leading to transfers of control, identify the rate
of their occurrence, and the way that they are handled in order
to understand whether or not there are signs of automation
complacency or degradations of functional vigilance in the
behavior of drivers.

\

Fig. 2: Visualization of the Tesla vehicle data collected in MIT-
AVT study. Red lines designate manual control of the vehicle.
Cyan lines designate Autopilot control of the vehicles.

III. METHODS
A. Functional Vigilance

As discussed in §II-A, vigilance is classically defined as the
ability of a human being to maintain concentrated attention
on a task that requires the detection of a critical signal. In
the automation context, the vigilance decrement measures
the decrease in a human ability to detect critical events
when tasked with supervising the automation. This classical
vigilance framework is shown in Fig. la.

Building upon the basic definition of vigilance (allocating
attention to detection of critical events over a period of
time), we wish to introduce a variation on it: the concept of
“functional vigilance.”

We do not deviate from this definition of vigilance in
measuring the fundamental ability of a driver to detect critical



events. However, we introduce a new term of “functional vig-
ilance” to emphasize the methodology and framework within
which we measure driver vigilance. The central characteristic
underlying the concept of functional vigilance is the ability
of the driver to choose when to serve as the operator of
the vehicle and when to serve as the supervisor of the
automation (in this case, Autopilot). Majority of the work on
vigilance decrement over the past several decades (see §II)
does not allow for this choice. In driving simulator studies,
the usual experiment has the human supervise the machine as
it operates for a specific period of time under a constant level
of automation. The free choice of when, where, and how to
serve as the supervisor is not given to the driver in most cases.
The ability to make this choice, however, may be the critical
pre-requisite of successful self-regulation of vigilance.

There is an important and illuminating distinction between
functional vigilance and “driver focus.” The latter is a general
measure of the degree that the driver is paying attention to the
driving scene [33]. Functional vigilance measures the ability
of the driver to detect and respond to critical events when
they arise. In Al-assisted driving, the two measures may be
highly correlated or they may not be. This is an important
open question that is not addressed in this work.

B. Al-assisted Driving Dataset

The dataset used in this work, which we refer to hereinafter
as the “Autopilot dataset”, is all the data from Autopilot-
enabled Tesla vehicles that are part of the MIT Autonomous
Vehicle Technology (MIT-AVT) naturalistic driving study [12].
The purpose of the MIT-AVT study is to collect and analyze
large-scale naturalistic data of Al-assisted driving in order
to understand and characterize real-world interaction between
human drivers and autonomous driving technology.

The Autopilot dataset includes 21 Autopilot-capable Tesla
vehicles and 323,384 total miles. The Tesla vehicles are all
driver-owned. No restrictions, suggestions or other guidance
is placed on where, when and how the vehicles are driven.
As shown in Fig. 2, the bulk of the driving in the dataset
is located in the Greater Boston and New England region,
although extended drives (e.g., from Massachusetts to Florida
and to California) are present in the dataset.

To observe, annotate, and automatically sense the driver and
the driving scene, the vehicles are instrumented with three
cameras: (1) on the driver’s face, (2) on the in-cab region,
and (3) directed out at the forward roadway [12]. All three
camera streams are watched jointly in synchrony during the
manual annotation process as described in §IV-B. Autopilot-
related system state, vehicle kinematics, and other pertinent
signals are derived from messages on one of the vehicle CAN
buses.

The Autopilot dataset contains a total of 26,638 epochs of
Autopilot utilization. An Autopilot epoch is defined as a period
of time between the driver electing to engage Autopilot and
either the driver or the system itself disengaging it. The focus
of the vigilance analysis in this work is on an epoch of time
before and after Autopilot disengagement (see §IV-B).

C. Autopilot Dataset System Specification

Tesla vehicles include several advanced safety and driver
assistance features. Under consideration in this work are
the modules of Traffic Aware Cruise Control (TACC) and
Autosteer, providing adaptive cruise control and lane-centering
capabilities, respectively. From this perspective, Tesla can
operate in 3 distinct modes: (1) manual control, (2) only
TACC, and (3) Autopilot (both TACC and Autosteer).

There are two hardware versions of Autopilot [8] in the
dataset, termed hardware version 1 (HW1) and hardware
version 2 (HW2). HW1 includes sensors fusion of radar,
ultrasonic sensors, and a monocular camera system developed
by Mobileye. HW2 includes eight surround cameras that
provide 360 degrees of visibility around the vehicle at up to
250 meters of range, twelve updated ultrasonic sensors, and a
forward-facing radar. Of the 21 vehicles in the dataset, 16 are
HW1 vehicles and 5 are HW2 vehicles.

D. Transfer of Control

The transition between the three aforementioned modes is
well-defined and requires explicit action by the driver, except
for machine-initiated disengagements of Autopilot that are ac-
companied by a loud audible warning and the visual displayed
symbol of the colloquially named “red hands.” In this work, we
do not consider special cases of automatic emergency braking
(AEB), automatic lane change, and ‘“navigate on Autopilot”
capabilities.

In Tesla Model S and Model X vehicles, the Autopilot
stalk is located to the left of and slightly behind the steering
wheel. Autopilot is engaged by pulling this stalk twice when
in manual state and once when in TACC state. An icon of a
steering wheel on the right side on the instrument cluster is the
main indicator of Autopilot state. The icon is (a) blue when
Autopilot is engaged, (b) gray when it is available but not
engaged, and (c) not visible when Autopilot is not available.

Autopilot can be disengaged in 4 ways: one system-initiated
and three driver-initiated. In a system-initiated disengagement,
Autopilot provides a visual “red hands” cue and an auditory
cue that indicates to the driver that they must immediately take
control of the vehicle. The three driver-initiated disengagement
options are via braking, steering, or pushing the stalk.

E. Critical Events during Autopilot Driving

Measuring functional vigilance requires enumerating cat-
egories of critical events (CE) in Autopilot driving. Four
categories were used in this study: CEl, CE2, CE3, and CE4.
These are defined below. The term “tricky situations” is used in
the definitions and throughout this work to describe challeng-
ing driving scenarios that require a response or anticipatory
action by the driver in order to maintain safe operation of the
vehicle. The four categories are defined as follows:

1) CE1: Human-initiated disengagements of Autopilot in
anticipation of or in response to tricky situations.

2) CE2: System-initiated disengagement of Autopilot as-
sociated with tricky situations.



3) CE3: Sudden deceleration events (i.e., hard braking)

during Autopilot control.

4) CE4: Tricky situations during Autopilot control that do

not result in disengagement or crash.

CEl and CE2 events are a subset of all Autopilot disengage-
ment events annotated as being associated with a tricky situa-
tion. We describe this annotation process in §III-F. However, a
prerequisite step to this annotation is the automated discovery
of Autopilot disengagement events. These disengagements
were extracted from the dataset by monitoring Autopilot state
CAN bus messages and detecting the moments when the state
changes from Autopilot enabled to any other state. In addition,
the same state variable provided error values associated with
system-initiated disengagements, allowing us to automatically
label disengagement as human-initiated or machine-initiated.
There are a total of 26,638 disengagement epochs in the
dataset considered here. We filtered out a set of epochs that
were difficult to annotate accurately. This set consisted of
disengagements (1) when Autopilot was used for less than
5 seconds and (2) the sun was below the horizon computed
based on the location of the vehicles and the current date.
Clear visibility of both the driving scene and the driver are
paramount for the annotation process that categorizes the
reasons for the disengagements. 18,928 disengagement epochs
resulted from this filtering process and went to the annotation
process as described in §III-F. Disengagement epochs resulting
in a crash (defined as striking another solid object) fall into
CE1 and CE2. No such crashes were detected in our dataset.

CE3 epochs were detected based on a 0.6g deceleration
trigger. This trigger type and threshold value was found to be
the most effective criteria for detecting crash-relevant events
in the SHRP2 dataset [34]. While 278 sudden deceleration
events were detected during manual control of the vehicle,
zero such events were detected during Autopilot control. It is
not precisely known what the maximum braking deceleration
threshold for the vehicles in the study is before the automatic
emergency braking (AEB) system is triggered. If the threshold
is below 0.6g, then the absence of CE3 epochs is part of
the system design specification, and harder braking events
would trigger AEB events and system disengagement. Braking
events that took the vehicle out of Autopilot control fall into
CEl events, and are analyzed as part of the disengagement
annotation process in §III-F. Therefore, any hard braking
events in the 10 second window following the disengagements
are annotated for their timeliness of driver response (see
SIII-F).

CE4 events are critical events that happen during Autopilot
but do not result in a disengagement or crash. Examples may
include running a red light while on Autopilot or drifting
across multiple lanes without the driver having initiated an
automatic lane change. It is hypothesized that events of this
type are most often captured in the CEl and CE2 categories,
because they would most likely result in a disengagement or
crash. However, it is possible to imagine cases where such
critical events do not result in a disengagement, but instead
result in Autopilot regaining a safe and proper trajectory on

the road. Such events are difficult to discover in the data — and
it is not clear that they can be automatically discovered using
computer vision, particularly without extensive supervised
machine learning efforts targeted at discovering each specific
rare edge case based on prior knowledge of each case’s visual
and semantic characteristics. We discuss possible computer
vision methodologies for discovering such events in §VI and
the limitations associated with excluding these events in §V-B.

However, it is very important to understand that the CE4
events may be very complex in nature — and while every
effort was made to find CE4 events in this research, it is still
possible that a few of these very rare events went undetected
in the dataset. Furthermore, it is quite possible that CE4
events are categorically different from CE1-3 — and require
not only that the driver be attentive to how well the Al-
assisted system is performing, but also require the driver to be
attentive to the driving situation and the degree to which the
system’s performance is appropriate to that situation. This may
requires in-depth knowledge of the system and its limits. It
may require more than simple “detection of visual stimuli”. In
other words, it may require more than vigilance. It may require
in-depth understanding of the system [35, 36] and the ability to
diagnose the situation. In fact, it can be argued that identifying
events in CE4 (at least some of them) cannot be treated within
the framework of vigilance, because they may involve much
more complex issues of knowledge-driven diagnosis, decision,
and response. For example, when an Autopilot-enabled Tesla
has been following a lead-vehicle (LV) and the LV leaves the
lane — revealing a stopped object (e.g., a fire engine) — wherein
the driver would need to understand that the Autopilot system
may not “see” stopped objects in this circumstance, nor brake
to them. Another example is when Autopilot treats a “gore”
(road split or exit ramp) in the highway as a set of lane lines,
the driver would need to understand and recognize that this
has happened and intervene before the gore ends in a barrier.

F. Annotation of Autopilot Disengagement Epochs

Each epoch of the 18,928 Autopilot disengagements epochs
were manually annotated by 3 to 13 people, depending on
the level of a disagreement between the annotators. The clips
show 5 seconds before and 10 seconds after the Autopilot
disengagement event.

The question asked of the annotators was: “Why was Autopi-
lot disengaged in this situation?” Supplementary information
provided along with the question was as follows:

o A tricky situation is a challenging driving scenario that
requires anticipatory or responsive action by the driver in
order to avoid potential property damage or a crash.

o If a tricky situation is present, use one of the three
responses associated with tricky situations.

« Examples of tricky situations include approaching a sharp
curve, lane merging, drifting out of lane, moving too
close to road dividers or other cars, vehicle or pedestrian
blocking road, etc.

For human-initiated disengagements, the answer options

were those listed in Table I excluding “hands off wheel.” For
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Fig. 4: Time spent and distance traveled on different road types categorized by speed limit.

machine-initiated disengagements, the answer options were
more extensive but mapped directly into the list provided in
Table 1.

We used a majority vote criteria for the annotation mediation
process. The number of annotations performed on each epoch
started at 3 and increased in increments of 2 until more than
50% of the annotators selected the same label for a clip.
13 annotators was the maximum number reached in order to
achieve a majority.

G. Subjective Nature of Annotating Response Timeliness

Our formulation and terminology of “tricky situations”
emphasizes the subjective nature of characterizing the critical
signals based on which functional vigilance is evaluated. There
are three subjective elements to these situations:

1) Planned vs Unplanned: The degree to which a short-
term navigation decision is planned (and thus not tricky)
or unplanned (and thus tricky).

2) Timing of Critical Signal: When does the tricky situa-



tion arise based on which a response of the driver may
be warranted.

3) Timing of Driver Response: What is the gap in time be-
tween when the critical signal is reasonably expected to
be detected and when the driver takes observable action
to successfully respond to the signal. The first choice is
whether the action is anticipatory or responsive (before
and after critical signal, respectively). The second choice
is whether a responsive action is “immediate” or “too
late”.

The nature of “too late” in evaluating the timeliness of
a response is a difficult one to characterize precisely. At
one extreme of defining “too late” are avoidable scenarios
that lead to a crash. At the other extreme is any scenario
where a tricky situation could have been addressed earlier. We
provide a definition of “too late” in order to aid the subjective
annotation. The definition is as follows: Situations where the
driver both should have and could have responded in a more
timely manner in order to avoid safety-critical consequences
of a tricky situation.

Additionally, we added a guiding note: Any response de-
layed by more than 1 second after the tricky situation should
likely be annotated as “too late.”

IV. RESULTS
A. Patterns of Use

As shown in Fig. 3, the Autopilot dataset includes 323,384
total miles and 112,427 miles under Autopilot control. Au-
topilot is used to drive 34.8% of miles and 15.1% of hours as
shown in Fig. 3. This represents a significant use of Autopilot
and reflects that the drivers are deriving value from the use
of the system. In contrast, TACC alone is only used 3% of
the time. Consequently, for the majority of our analysis, we
do not consider TACC, and only focus on the comparison
and transition between manual and Autopilot, which together
comprise 97% of driving time.

Fig. 4 shows the time spent and distance traveled under
manual and autopilot control on different road types. Speed
limit, derived from the fusion of GPS and vision sensors,
is used for categorizing road type following the taxonomy
defined by the U.S. Department of Transportation Federal
Highway Administration [37]. Interstate, freeway, multilane
highway, and other arterial roads are generally associated
with speed limits of 55 mph and above. Connector roads
and local roads are associated with speed limits below 55
mph. Drivers elect to use Autopilot primarily on roads with a
speed limit of 55 mph and above. In contrast, the vehicle is
controlled manually on roads with speed limits below 55 mph
the majority of the time. This is true both when measured in
time and distance spent on these road types.

To further contextualize patterns of system use, we report
on the fraction of time spent in speed-restricted traffic, defined
as travel speeds 10 mph below the speed limit or slower.
Measured in time, 45.5% of manual control, 15.87% of TACC
control, and 19.3% of Autopilot control is spent in these kinds

of traffic conditions. In other words, in our dataset, Autopilot
is primarily used in fast, free flowing traffic as measured by
both fraction of time and distance.

Normalizing to the number of Autopilot miles driven during
the day in our dataset, it is possible to determine the rate of
tricky disengagements. This rate is, on average, one tricky
disengagement every 9.2 miles of Autopilot driving. Recall
that, in the research literature (see §II-A), rates of automation
anomalies that are studied in the lab or simulator are often
artificially increased in order to obtain more data faster [19]
such as “1 anomaly every 3.5 minutes” or “l anomaly every
30 minutes.” This contrasts with rates of “real systems in
the world” where anomalies and failures can occur at much
lower rates (once every 2 weeks, or even much more rare
than that). The rate of disengagement observed thus far in
our study suggests that the current Autopilot system is still
in an early state, where it still has imperfections and this
level of reliability plays a role in determining trust and human
operator levels of functional vigilance. We discuss this concept
as a possible explanation for the observed functional vigilance
results in §V-A2.

B. Functional Vigilance during Autopilot Driving

The measure of functional vigilance we use in our analysis
is not merely whether the drivers detect the critical events CE1
and CE2 defined in §III-E but if they do so in a timely fashion.
The three temporally distinct categories associated with tricky
situations during Autopilot disengagement are shown in Ta-
ble I under the category of “Tricky Situation Present.” The first
two subcategories when the driver performs anticipatory action
or responds immediately to a tricky situation are indicative of a
high level of functional vigilance. The third subcategory when
the driver responds too late to a tricky situation would be the
category which would include instances arising from a low
level of functional vigilance.

Of the 18,928 annotated disengagement epochs, 8,729
epochs were labeled as associated with tricky situations. Their
description and distribution is listed under “Tricky Situation
Present” category in Table I. The target measure for this
analysis is the number of epochs annotated as “act too late
after tricky situation.” These epochs are those that would
be considered missed or delayed detections of critical events
and thereby would represent a significant functional vigilance
decrement. As Table I shows, no such epochs were discovered
in our dataset. The high-level functional vigilance breakdown
of Autopilot disengagement epochs is as follows:

¢ No tricky situation: 10,118

o Tricky situations that were anticipated ahead of time or

responded to immediately: 8,682
o Tricky situations that were responded to after a signifi-
cantly delay or not at all (see note in Table I): 0

Table II shows the categories of tricky situations and their
frequencies for disengagements that preceded and followed a
tricky situation. Presence of a curve is the most common rea-
son for anticipatory disengagement of autopilot. The vehicle
getting too close to lane, wall, or another car, is the most



Critical Event Disengagement Description Human | Machine Summary of Results:
Category Reason P Initiated | Initiated
Type of Driver Percentage of
Act too late after | Delayed response to tricky 0 0 y:esponse Disengagefnents
tricky situation situation (see details in §111-G). ‘|_.
Tricky . Delayed
Situation R?pld t!meIY response aftera 813 47 (Slow responses or 0.0%*
tricky situation arises. . .
Present missed detections)
Ar.1t|C|p..'=1torY action before a 7,869 0 Responsive
tricky situation. > (Rapid timely 4.5%
Planned Turning | Taking control to make a responses)
- - 8,608 68
or Speed Change | planned navigation decision. Anticipatory
. Stopping for stop sign, (Action before T.S. or 90.6%
Planned Stopping yellow/red traffic light. 601 0 ] planned decision)
. ) Accidentally bumping the wheel n Other
2.? Trtlf:ky Accidental or the Autopilot stalk. 38 0 (Accidental, not 4.9%
R on X - K annotatable, etc.)
Present Annotation Image is too bright/dark for 0 0
Difficult accurate annotation. . .
*This value is entered as “0.0%” to reflect the
No clear reason | No clearly identifiable reason 777 0 fact that no such events were found in our
dataset using the methods described. However,
Hands off wheel Warn'ln'g lgnored.whlle 0 13 itis possible that some events of this type exist
remaining attentive to the road. _ in the dataset but went undiscovered. Future
. work may lead to new methods that will help
Total Annotated Disengagement Epochs: 18,800 128 identify these, if any exist.

TABLE I: Annotated reasons for disengagement of Autopilot. The annotation process and question details are described in
8III-F. Reasons are divided into two categories: those associated with tricky situations and those that are not. The label of
“act too late after tricky situation” was designed to locate disengagement epochs associated with high functional vigilance
decrement. Of the 18,928 total annotated disengagements, no epochs were labeled in this way by the annotators. The results
are summarized in the table on the right with respect to functional vigilance and anticipatory characteristics of the quantitative

results.

common reason for reactive disengagement of Autopilot. This
statistics may be instructive for designing Al-assisted systems
that aim to effectively deal with scenarios that drivers may
consider “tricky.”

Fig. 5 shows the difference in disengagement velocity and
epoch duration between Autopilot epochs that do not end in
a tricky situation and those that do, the latter receiving either
an anticipatory or a reactive action from the driver. A key
statistic is that the median duration for an Autopilot epoch
that ends in a reactive response to a tricky situation is 2.0
minutes and the mean is 5.2 minutes. The distribution of
epoch duration has a very long tail including many epochs that
are over | hour. In general, all metrics considered revealed
no significant differences between the three categories of
Autopilot disengagements shown in Fig. 5.

V. DISCUSSION
A. Proposed Explanation for Observed Behavior

The patterns of Autopilot use and the functional vigilance
measures reported in this work indicate that drivers in this
study were using Autopilot extensively and yet did not ap-
pear to over-trust the system to a degree that compromised
functional vigilance. We hypothesize two explanations for the
results as detailed below: (1) exploration and (2) imperfection.
The latter may very well be the critical contributor to the
observed behavior. Drivers in our dataset were addressing

tricky situations at the rate of 1 every 9.2 miles. This rate
led to a level of functional vigilance in which drivers were
anticipating when and where a tricky situation would arise or
a disengagement was necessary 90.6% of the time. In another
4.5% of cases, drivers were immediately responsive to an
Autopilot disengagement or tricky situation, suggesting that
they were attentive and functionally vigilant.

It is important to emphasize, as stated previously and
detailed further in §V-B, that these findings (1) cannot be
directly used to infer safety as a much larger dataset would
be required for crash-based statistical analysis of risk, (2) may
not be generalizable to a population of drivers nor Autopilot
versions outside our dataset, (3) do not include challenging
scenarios that did not lead to Autopilot disengagement, (4)
are based on human-annotation of critical signals, and (5)
do not imply that driver attention management systems are
not potentially highly beneficial additions to the functional
vigilance framework for the purpose of encouraging the driver
to remain appropriately attentive to the road.

1) Exploration: Most of the time and distance traveled
under Autopilot control in our dataset is in free-flowing traffic
on highways. However, a significant fraction of Autopilot
epochs and thus disengagements are on local roads (i.e., roads
characterized by non-highway speed limits). This may indicate
that drivers regularly explore the limits of the system in a
way that ventures outside the traditionally defined operational
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epochs longer than a specific duration.

design domains (ODD) for similar vision-based lane-centering
systems. This type of experiential learning may allow them
to acquire an understanding of system performance limits —
knowledge which is then used in dealing with events like
tricky situations described in this research. At this time, this
hypothesis is based on discussion with Tesla owners and
preliminary results of survey responses from Tesla owners.
In future work, we will seek to support or disprove this
hypothesis through methods which may include extensive self-
report data collection and further data analysis.

2) Imperfection: In common with most, if not all, current
Al-assisted vehicle systems, Autopilot is not perfect in its
ability to safely navigate through any possible edge case
scenario in driving. In our data, as described in §IV-B, 46.2%
of Autopilot disengagements are where the human driver is
anticipating or responding to a tricky situation. Normalizing
this number of Autopilot miles driven during the day in
our dataset, we determine that such tricky disengagement
occur on average every 9.2 miles of Autopilot driving. Under
these conditions, the system limits reveal themselves regularly
and the human driver “catches” the system and takes over.
The natural engineering response to such data may be to

strive to lower the rate of such “failures.” And yet, these
imperfections are likely a significant contributing factor to
why the drivers are maintaining functional vigilance. In other
words, perfect may be the enemy of good when the human
factor is considered. A successful Al-assisted system may not
be one that is 99.99...% perfect but one that is far from perfect
and effectively communicates its imperfections.

B. Limitations

The central finding of this analysis of our large-scale natu-
ralistic Al-assisted driving study is that drivers in this sample
operating Tesla vehicles under Autopilot control appear to
remain functionally vigilant to a degree that stands in contrast
to what might be predicted by prior literature that spans fields
from robotics [39] to human factors [17]. While, to the best
of our knowledge, this study is the largest published work
of its kind, and its findings are grounded in real-world data,
we acknowledge possible limitations and anticipate differing
interpretations of the data. In this section, we present several
such limitations.

1) Subject Sample Characteristics and Demographic Gen-
eralizability: The most common concern raised in our discus-
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sion of this work is that owners of Tesla vehicles are especially
tech-savvy and appear to not include some of the higher-
risk demographics such as teenage drivers. This is a relevant
point. However, the literature on human behavior in relation
to automation [13, 15, 16, 17, 18] observes many of the same
patterns across all populations. Therefore, if our findings are

not fully generalizable, they are nevertheless highly surprising
and informative for the population in our data.

2) Long Term Effects: For drivers to maintain functional
vigilance, they have to regulate the degree of their trust in the
system such that they don’t over-rely on it to a degree that the
system cannot functionally support. In our analysis, we present
evidence that drivers in our dataset appear to successfully
self-regulate Autopilot use and do not appear to over-trust
the system in a way that compromises functional vigilance.
We have been tracking most of the drivers in our study for
over a year and some for over 2 years [12]. However, we
do not capture long-term effects that may span 2 or more
years. It’s possible that as drivers do less and less manual
driving, their ability to perform the driving task degrades and
their ability to self-regulate an effective collaboration with
automation degrades as well. Also, if system reliability were
to improve significantly over time, the levels of functional
vigilance observed here may well change.

3) Measuring Functional Vigilance: Our approach to mea-
suring functional vigilance focuses on critical events connected
to disengagement of Autopilot. As discussed in §III-E, there
may be critical event during Autopilot use that do not lead
to a disengagement or crash, such as running a red light or
drifting lanes (see CE4 in §III-E). It is possible that such events
may exist in the dataset and have not yet been detected by
our methods. However, they are hypothesized to be rare as
compared to the set of tricky situations that were annotated.
Conceptually one could perform a rigorous computer vision
analysis of this data in order to assess the frequency of these
events but any such approach would have its own limitations.
Nevertheless, such an effort is something that remains to be
done in the future. It is plausible that, as many worry, driver
inattention would couple with failures of this type to shape risk
but this effect is beyond the focus of this work and remains



to be examined in future efforts.

4) Functional Vigilance Decrement and Safety: The re-
sults described in this work show that drivers in our dataset
maintained sufficient functional vigilance to respond to tricky
situations that arose at the time of disengagement. These
results do not, however, make any comparative claims on
vehicle safety. The fact that drivers in our dataset maintained
functional vigilance may or may not be correlated to measures
of vehicle safety, but such analysis is outside the scope of this
work.

It is also recognized that we are talking about behavior
observed in this substantive but still limited naturalistic sam-
ple. This does not ignore the likelihood that there are some
individuals in the population as a whole who may over-
trust a technology or otherwise become complacent about
monitoring system behavior no matter the functional design
characteristics of the system. The minority of drivers who use
the system incorrectly may be large enough to significantly
offset the functional vigilance characteristics of the majority of
the drivers when considered statistically at the fleet level. The
limited number of, but well reported, Tesla crash events make
the case that not all drivers develop a sufficient understanding
of the realistic ODD characteristics or other limitations of
the system, or of the need to maintain an appropriate level
of overall situational monitoring. At the same time, it seems
apparent that not all drivers of manually controlled vehicles
fully appreciate the limitations of such vehicles’ capabilities
nor exercise appropriate functional vigilance at all times. Crash
prevalence on our highways make this clear.

5) Subjective Annotation of Tricky Situations: As described
in §III-F, the subjective annotation of epoch aims to label the
Autopilot disengagement scenarios that are deemed “tricky”
by human observers. This does not necessarily mean that
if the driver did not elect to take control when they did
that the automation would fail to handle the situation. In
other words, the subjective annotation of tricky situations is
strictly an approximation of what is a difficult scenario for the
automation.

Two guiding directives were given to the annotators for
labeling responses as “too late”. The primary directive was
Situations where the driver both should have and could have
responded in a more timely manner in order to avoid safety-
critical consequences of a tricky situation. The secondary
directive was Any response delayed by more than 1 second
after the tricky situation should likely be annotated as “too
late.” The exact wording of the directives, emphasis on the
first directive, and the choice of 1 second for the second
directive all may have had an impact on the annotation result.
Future work may include exploration of sensitivity of the final
annotation result to the choice and structure of both qualitative
and quantitative directives.

C. Path Forward for Al-assisted Vehicle Systems

The findings in this work indicate that functional vigilance
does not appear to be decremented during Autopilot use in
the dataset under consideration. However, they do not make

clear how Al-assisted vehicle systems should be designed
to optimize for functional vigilance. We propose two high-
level design principles of allowing for (1) exploration and
(2) imperfection in §V-A above. Exactly how to implement
such principles is an open question. These two principles are
likely to be only a subset of what is needed to design safe
and enjoyable Al-assisted driving experiences for the entire
population of drivers.

We also propose two other potentially highly beneficial
additions to aid in the management of the functional vigilance
framework as illustrated in Fig. 6. The first is in the form of a
feedback loop that includes sensing and managing the state of
the driver. This allows the machine to supervise the supervisor
and warn them when a functional vigilance decrement, atten-
tional failure, or other deviation from reasonable driver activity
is detected. Such supervision can take the form of a hands-on
steering wheel sensor and a camera-based driver monitoring
system (e.g., Cadillac Super Cruise system). The degree of
fidelity and approach most helpful to effectively sense and
manage the state of the driver is an important open area of
research.

The second proposed addition of potential benefit is a
secondary perception-control system as detailed in [38] where
a third-party system serves as a supervisor of the primary
automation providing the driver with an additional signal
on the uncertainty (probability of error) in the sequence
of perception and control decisions made by the primary
system. Taken together, these additions may help manage the
performance of the human (Fig. 6a) and the machine (Fig. 6b)
in functional vigilance framework. Furthermore, they may help
provide additional protection in the event that there are CE4
events that do exist, but have not yet been identified.

VI. CONCLUSION

In this work, we provide evidence from a large-scale Tesla
Autopilot driving dataset that drivers in this dataset maintain
functional vigilance in their use of Autopilot. In this data,
drivers use the system extensively and travel 34.8% of miles
under Autopilot control. We annotated 18,928 epochs of Au-
topilot disengagements for presence of challenging scenarios
(termed “tricky situations”) and whether the driver anticipates
or responds to these situations in a timely manner. Through
this process, 8,729 tricky situations were annotated by mul-
tiple individuals until an agreement was reached about the
timeliness of the driver response with respect to the critical
signal. The resulting annotation categorized the driver as func-
tionally vigilant in all cases as determined through subjective
annotation of the temporal characteristics of their response.
We discuss two possible contributing factors that underlie
these results, and propose possibly beneficial expansion of the
functional vigilance framework with monitoring systems for
both the human and the automation. Finally, we enumerate
several limitations of our work including that these findings
(1) cannot be directly used to infer safety as a much larger
dataset would be required for crash-based statistical analysis
of risk, (2) may not be generalizable to a population of



drivers nor Autopilot versions outside our dataset, (3) do not
include challenging scenarios that did not lead to Autopilot
disengagement, (4) are based on human-annotation of critical
signals, and (5) do not imply that driver attention management
systems are not potentially highly beneficial additions to the
functional vigilance framework for the purpose of encouraging
the driver to remain appropriately attentive to the road.

The authors are highly cognizant that there are significant
nuances in the design, analysis, and interpretation of this
work. It is our hope that it will encourage serious discussion
and further investigation of how seemingly subtle features of
Al-assisted system design and implementation may influence
the extent to which humans are able to sustain appropriate
collaborative engagement with such technology.

Future work will include automated glance region classi-
fication of drivers during Autopilot control and comparable
baseline periods during manual control in order to gain a
greater depth of insight on attention allocation and functional
vigilance decrement during prolonged use of Autopilot. In
addition, extensive self-report data collection through ques-
tionnaires of Tesla owner will be conducted to gain an
understanding of system use and perceptions across a large
population of drivers.
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