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ACCELERATED MATHEMATICAL ENGINE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the priority benefit under
35 USC § 119(e) to U.S. Prov. Pat. App. Ser. No. 62/536,399
(20150-2154P (P0822-1PUS)), filed on Jul. 24, 2017,
entitled “Accelerated Mathematical Engine,” and listing
Peter Joseph Bannon, Kevin Altair Hurd, and Emil Talpes as
inventors. The aforementioned patent document is incorpo-
rated by reference herein in its entirety and for all purposes.

BACKGROUND

A. Technical Field

[0002] The present disclosure relates to an accelerated
mathematical engine for operating on large amounts of data,
and more particularly, to an accelerated mathematical engine
for performing complex convolution operations based on
matrix multiply operations.

B. Description of the Related Art

[0003] One skilled in the art will recognize the ever-
increasing demands of speed and performance on general
processors and systems that are used to implement time-
sensitive and complex mathematical operations. As these
general systems are used to process large amounts of data
and perform complex mathematical operations, the compu-
tational resources and the rate of calculations are limited by
the capabilities of existing general hardware designs that
perform those calculations. For example, general-purpose
computing devices and processors that execute matrix
operations may be unable to perform these operations in a
timely manner under certain circumstances. Many conven-
tional multipliers that perform digital signal processing
operations rely on a series of software and hardware matrix
manipulation steps (address generation, transpositions, bit-
by-bit addition and shifting, etc.) and may represent a
bottleneck within a time-sensitive system. Oftentimes, these
manipulation steps require the use of a processor’s arithme-
tic functions to generate intermediate results at the expense
of wasting computing time due to the added steps of storing
and fetching intermediate results from various locations to
complete an operation.

[0004] FIG. 1 shows an example of a conventional mul-
tiplier system. Multiplier system 100 is a scalar machine that
comprises computation unit 102, registers 104, cache 106,
and memory 108. In operation, computation unit 102 uses
registers 104 and cache 106 to retrieve data stored in
memory 108. Typically, computation unit 102 is a micro-
processor, such as a CPU or GPU, capable of performing
various computational procedures including matrix multi-
plication on input matrices to obtain a resultant matrix, e.g.,
by converting multiplications into additions and outputting
the result into some internal register.

[0005] For example, a dot product that represents an
output pixel of an image is typically generated by dot-
multiplying individual matrix elements from two matrices to
obtain partial results, which are then added to obtain the final
dot product. A multiplication of individual matrix elements,
i.e., a scalar multiplication, is typically performed on indi-
vidual data elements by breaking up the dot multiplication
into a series of individual sub-operations. As a result, partial
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products have to be stored and fetched from one or more of
registers 104, cache 106, and memory 108 to complete a
single arithmetic operation.

[0006] Computationally demanding applications, such as
a convolution, oftentimes require a software function be
embedded in computation unit 102 and used to convert
convolution operations into alternate matrix-multiply opera-
tions. This is accomplished by rearranging and reformatting
data into two matrices that then can be raw matrix-multi-
plied. However, there exists no mechanism to efficiently
share or reuse data in scalar machine 100, such that data
necessary to execute each scalar operation has to be re-
stored and re-fetched from registers many times. The com-
plexity and managerial overhead of these operations
becomes significantly greater as the amount of image data
subject to convolution operations increases.

[0007] The inability to reuse much of the data in scalar
machine 100 coupled with the added and inefficient steps of
storing and fetching intermediate results from registers 104,
cache 106, and memory 108 to complete an arithmetic
operation are only some of the shortcoming of existing
systems, such as multiplier system 100.

[0008] Accordingly, what is needed are high-computa-
tional-throughput systems and methods that can perform
matrix mathematical operations quickly and efficiently.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] References will be made to embodiments of the
invention, examples of which may be illustrated in the
accompanying figures. These figures are intended to be
illustrative, not limiting. Although the invention is generally
described in the context of these embodiments, it should be
understood that it is not intended to limit the scope of the
invention to these particular embodiments. Items in the
figures may be not to scale.

[0010] FIG. 1 shows an example of a conventional mul-
tiplier system.
[0011] FIG. 2 illustrates and exemplary matrix processor

architecture for performing arithmetic operations according
to various embodiments of the present disclosure.

[0012] FIG. 3 illustrates details of an exemplary configu-
ration of the matrix processor architecture shown in FIG. 2.
[0013] FIG. 4 illustrates an exemplary multiply-and-add
circuit implementation of the logic circuit shown in FIG. 3.
[0014] FIG. 5 illustrates an exemplary convolution opera-
tion according to various embodiments of the present dis-
closure.

[0015] FIG. 6 through FIG. 8 illustrate details of an
exemplary convolution operation according to various
embodiments of the present disclosure.

[0016] FIG. 9 illustrates an exemplary deconvolution
operation according to various embodiments of the present
disclosure.

[0017] FIG. 10 illustrates a process for performing arith-
metic operations to make convolutional neural networks
faster, according to various embodiments of the present
disclosure.

DETAILED DESCRIPTION OF EMBODIMENTS

[0018] In the following description, for purposes of expla-
nation, specific details are set forth in order to provide an
understanding of the invention. It will be apparent, however,
to one skilled in the art that the invention can be practiced
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without these details. Furthermore, one skilled in the art will
recognize that embodiments of the present invention,
described below, may be implemented in a variety of ways,
such as a process, an apparatus, a system, a device, or a
method on a tangible computer-readable medium.

[0019] Components, or modules, shown in diagrams are
illustrative of exemplary embodiments of the invention and
are meant to avoid obscuring the invention. It shall also be
understood that throughout this discussion that components
may be described as separate functional units, which may
comprise sub-units, but those skilled in the art will recognize
that various components, or portions thereof, may be divided
into separate components or may be integrated together,
including integrated within a single system or component. It
should be noted that functions or operations discussed herein
may be implemented as components. Components may be
implemented in software, hardware, or a combination
thereof. Many components are be formed through intercon-
nection of many subcomponents. Subcomponents may be
selected that are logically different in operation from what is
shown herein, where these logically different subcompo-
nents can be combined in the aggregate with other subcom-
ponents provide similar or identical functionality at the
aggregated component level to that described herein (e.g.,
active high signals can be active low, AND gates replaced
with inverted-input NOR gates, etc).

[0020] Furthermore, connections between components or
systems within the figures are not intended to be limited to
direct connections. Rather, data between these components
may be modified, re-formatted, or otherwise changed by
intermediary components. Also, additional or fewer connec-
tions may be used. It shall also be noted that the terms
“coupled,” “connected,” or “communicatively coupled”
shall be understood to include direct connections, indirect
connections through one or more intermediary devices, and
wireless connections.

[0021] Reference in the specification to “one embodi-
ment,” “preferred embodiment,” “an embodiment,” or
“embodiments” means that a particular feature, structure,
characteristic, or function described in connection with the
embodiment is included in at least one embodiment of the
invention and may be in more than one embodiment. Also,
the appearances of the above-noted phrases in various places
in the specification are not necessarily all referring to the
same embodiment or embodiments.

[0022] The use of certain terms in various places in the
specification is for illustration and should not be construed
as limiting. A service, function, or resource is not limited to
a single service, function, or resource; usage of these terms
may refer to a grouping of related services, functions, or
resources, which may be distributed or aggregated.

[0023] The terms “include,” “including,” “comprise,” and
“comprising” shall be understood to be open terms and any
lists that follow are examples and not meant to be limited to
the listed items and may include subsets or supersets of the
items along with additional items. Any headings used herein
are for organizational purposes only and shall not be used to
limit the scope of the description or any claims. Each
document mentioned in this patent document is incorporate
by reference herein in its entirety.

[0024] Furthermore, one skilled in the art shall recognize
that: (1) certain steps may optionally be performed; (2) steps
may not be limited to the specific order set forth herein; (3)
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certain steps may be performed in different orders; and (4)
certain steps may be done concurrently.

[0025] Although embodiments herein are discussed
mainly in the context of convolutions, one of skill in the art
will appreciate that a deconvolution and other matrix opera-
tions can also be structured as a matrix-matrix type multiply
operation and, thus, the principles of the present invention
are equally applicable to deconvolutions. Furthermore, other
types of mathematical operations may be implemented in
accordance with various embodiments of this disclosure.
[0026] FIG. 2 illustrates an exemplary matrix processor
architecture for performing arithmetic operations according
to various embodiments of the present disclosure. System
200 comprises logic circuit 232 234, cache/buffer 224, data
formatter 210, weight formatter 212, data input matrix 206,
weight input matrix 208, matrix processor 240, output array
226, post processing units 228, and control logic 250. Matrix
processor 240 comprises a plurality of sub-circuits 242
which contain Arithmetic Logic Units (ALUs), registers and,
in some embodiments, encoders (such as booth encoders).
Logic circuit 232 may be a circuit that represents N input
operators and data registers. Logic circuit 234 may be
circuitry that inputs M weight operands into matrix proces-
sor 240. Logic circuit 232 may be circuitry that input image
data operands into matrix processor 240. Weight input
matrix 208 and data input matrix 206 may be stored in
various types of memory including SRAM devices. One
skilled in the art will recognize that various types of oper-
ands may be input into the matrix processor 240.

[0027] In operation according to certain embodiments,
system 200 accelerates convolution operations by reducing
redundant operations within the systems and implementing
hardware specific logic to perform certain mathematical
operations across a large set of data and weights. This
acceleration is a direct result of methods (and corresponding
hardware components) that retrieve and input image data
and weights to the matrix processor 240 as well as timing
mathematical operations within the matrix processor 240 on
a large scale.

[0028] In embodiments, formatters 210 212, which in
example in FIG. 2 are implemented as in-line formatters. In
certain embodiments, formatters 210 212 are discrete com-
ponents and in other embodiments the formatters 210 212
are integrated together and/or with one or more other
components. Each is implemented in hardware and converts
a matrix to a vector on operands to be operated upon within
the matrix processor 240. In other embodiments, formatters
210 212 are implemented in software, although this typically
produces a loss in speed. Data formatter 210 converts
two-dimensional or three-dimensional (e.g., a 3x3x3 cube)
data comprising data input matrix 206 into a single vector or
string that may be represented by a row or column, thereby,
linearizing or vectorizing data input matrix 206. In detail,
formatter 210 receives data input matrix 206 and prepares
input data to be processed by matrix processor 240. In
embodiments, this is accomplished by mapping parameters
of'the data input matrix 206 into a suitable format according
to the hardware requirements of matrix processor 240 such
that matrix processor 240 can efficiently perform a matrix
multiply as part of a convolution calculation when generat-
ing output pixels.

[0029] As an example, assuming matrix processor 240
comprises 96 rows and 96 columns, data mapped into a
96x96 format would cause matrix processor 240 to be
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utilized to its full computational capacity and, thus, provide
a preferred efficiency. In that case, formatter 210 should
produce an output that is 96-columns wide. Similarly, for-
matter 212 should produce an output that is 96-rows wide
based on the weight input matrix 208.

[0030] In embodiments, formatter 210 uses a number of
multiplexers or switches to fetch some or all of data input
matrix 206 and choose different elements therefrom in order
to produce data that is then lined up according to the
columns of matrix processor 240. In embodiments, the
selection ensures that the appropriate data from data input
matrix 206 is passed to each of the columns at defined clock
cycles. In embodiments, if weights are static, they may be
pre-formatted offline, stored in memory, fetched only once,
and fed directly into matrix processor 240 in a modified,
vectorized format without the use of formatter 212. In other
embodiments, weights may be dynamically adjusted and fed
into matrix processor 240 in accordance with various for-
matting and fetching operations. In embodiments, matrix
processor 240 allows for column and row inputs of varying
sizes. That is, matrix processor 240 is designed to compute
NxM computations of arbitrary size.

[0031] In other embodiments, if the number of columns of
the matrix processor 240 is limited (for example to N
columns) such that the number of columns in the data input
matrix 206 (for example X) is greater than the number of
columns of the matrix processor 240 (i.e., X>N), then the
control logic 250 may split the data input matrix 206 into
multiple submatricies with each submatrix computed by a
matrix processor 240. In such instances, each matrix pro-
cessor 240 may be running in a different thread. For
example, if data input matrix 206 consists of 192x96 data
points, and the matrix processor has 96 columns and 96 rows
(i-e., 96x96 computations may occur in one clock cycle), the
control logic 250 may split the data input matrix 206 into
two submatricies (such as the left half of the data input
matrix 206 and the right half of the data input matrix 206).
Each submatrix will consist of 96x96 data points. Each
separately threaded matrix processor 240 can compute the
output channels for the submatrix sent to it with results
placed into the final output array 260, which must be large
enough to hold the values from all channels (that is 192
values). More generally, data input matrix 206 may be split
into any number of submatricies and sent to different matrix
processors 240, each running in a separate thread. As with
the output array 226, the data input matrix 206, data for-
matter 210, cache/buffer 224, logic circuit 232, and post
processing unit 228 must similarly be able to accommodate
the larger data.

[0032] In alternative embodiments, a CNN may be com-
puted between multiple matrix processors 240 by having
control logic 250 splitting the computations along the inner
product. The segments of the inner product are computed,
each in a different matrix processor 240, and then the input
products added together to compute the output vector, which
is then stored in output array 260.

[0033] Unlike common software implementations of for-
matting functions that are performed by a CPU or GPU to
convert a convolution operation into a matrix-multiply by
rearranging data to an alternate format that is suitable for a
fast matrix multiplication, various hardware implementa-
tions of the present disclosure re-format data on the fly and
make it available for execution, e.g., 96 pieces of data every
cycle, in effect, allowing a very large number of elements of
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a matrix to be processed in parallel, thus efficiently mapping
data to a matrix operation. In embodiments, for 2N fetched
input data 2N? compute data may be obtained in a single
clock cycle. This architecture results in a meaningful
improvement in processing speeds by effectively reducing
the number of read or fetch operations employed in a typical
processor architecture as well as providing a paralleled,
efficient and synchronized process in performing a large
number of mathematical operations across a plurality of data
inputs.

[0034] In embodiments, to increase efficiency of matrix
processor 240 that may have any arbitrary number of
columns and rows, formatter 212 214 may reformat different
shapes of input matrices data into the columns and rows
suitable for matrix processor 240. In embodiments, format-
ting is performed dynamically to accommodate processing
of matrices having different input sizes. In embodiments, the
reformatted matrixes comprising input channels are fed into
cache/buffer 224.

[0035] Cache/Buffer 224 may fetch data from data input
matrix 206 only 1/k times as various pieces of data may be
reused, where k is the convolution kernel width. For
example, for any given cycle, once a row is fetched, certain
columns will have access to all the data in that row. In
embodiments, cache/buffer 224 may be a local buffer that
stores a local copy of data that may be reused by a convo-
Iution without having to re-access and read data from
SRAM.

[0036] Once matrix processor 240 has completed a com-
putation, a set of result may be shifted, e.g., from the
accumulators in the bottom row of matrix processor 240,
e.g., to output flip-flops (not shown) that effectively form a
shift register that receive a dot product. In embodiments,
pulling or shifting results into output array 226, e.g., one per
clock cycle, from a row that corresponds to an output
channel may be accomplished by a state machine (not
shown). The state machine may perform additional opera-
tions on the output channel, for example, prior to sending
data to SRAM and/or post processing unit 228. The internal
operation of matrix processor 240 will be described in more
detail below.

[0037] In embodiments, matrix processor 240 comprises
shadow resisters that enable parallel processing by storing a
copy of the results that are passed through matrix processor
240 to output array 226. In embodiments, moving an opera-
tion result from output register to shadow register involves
loading the next set of values into the AL Us.

[0038] Once an accumulation has completed, a convolu-
tion may commence and accumulation may start over before
all of the data of'a prior convolution is output to output array
226. As a result, in every clock cycle, the data in matrix
processor 240 may move down by one row, such that for
each cycle the last row may be output to output array 226.
In effect, this mode of operation ensures that a new calcu-
lation may be made in each consecutive cycle without any
interruptions and independent of additional processing
operations, such as storing data in SRAM, etc.

[0039] Post processing unit 228 may comprise or interact
with a number of devices (not shown), such as a hardware-
accelerated pooling unit, a DRAM that may be part of a
direct memory access (“DMA”) that retrieves data from
memory and stores data (e.g., weights and results) in SRAM,
and the like. The devices may be partially or entirely
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controlled by control logic 250, which may also manage
formatters 210 212 and other components within system
200.

[0040] Not shown in FIG. 2 are auxiliary devices that
perform management functions, such as a sequencer that
generates addresses for reading the data, writes the results,
and keeps track of where system 200 is in the convolution
in order to calculate from where to get and how to execute
the data that will be used in a subsequent step of the
convolution.

[0041] In certain embodiments, weight input matrix 208 is
physically split and drives weights from two different sides
of matrix processor 240, such that the two-dimensional array
is split into two regions (e.g., a left-hand side and a right-
hand side) that each receive a portion of the data in weight
input matrix 208. Such an implementation reduces data
latency by taking advantage of the fact that weights are
known. In embodiments, in order to reduce peak power
consumption, the timing of operations may be chosen such
that multiplications of weight and data are spread out over
a certain number of cycles. This efficient timing of opera-
tions results in a reduction of energy consuming steps
including a decrease in the number of read operations
performed by the matrix processor and improving the effi-
ciency of data movement within the matrix (e.g., between
sub-circuits).

[0042] In embodiments, a state machine (not shown) that
is configured to identify redundant data may be employed.
Identified redundant data may be reused across columns,
such that the data does not need to be re-fetched. The state
machine may be configured to determine how and where to
shift data that is to be executed, e.g., based on inputs related
to image size, filter size, stride, number of channels, and
similar parameters.

[0043] In embodiments, a booth encoder is shared across
a number of elements in the multiplication architecture of
matrix processor 240. The booth encoder may be any booth
encoder known in the art and may be used to multiply two
numbers and encode one of the two numbers, e.g., from an
8-bit value to a 12-bit or any other value that makes
multiplication operations easier on the multiplier logic and,
thus, faster. In embodiments, the booth encoder may be
applied in parallel across an entire row so as to share the
same encoded, alternate weight value across all columns. By
loading an operand across all columns, a multiplication may
be performed in a single clock cycle across an entire row.
The cost for leveraging re-encoding to share the same data
(e.g., weights) across for N computational elements is thus
paid only once for each column (or row). In comparison, in
existing computing architectures, every single scalar would
require a booth encoder for every single multiplication
operation.

[0044] FIG. 3 illustrates details of an exemplary configu-
ration of the matrix processor architecture shown in FIG. 2.
In embodiments, matrix processor 300 may accommodate a
predetermined vector length on each axis. As depicted in
FIG. 3, matrix processor 300 may comprise an array of 6x6
tiles 302 that are arranged in a matrix format. Each tile 302
may comprise a matrix 320 that, in turn, comprises sub-
circuits circuits 350. As discussed in detail below with
reference to FIG. 4, each sub-circuit circuit 350 may be a
cell capable of performing arithmetic operations. In embodi-
ments, sub-circuit circuit 350 performs simultaneously mul-
tiplication, accumulation, and shift operations.
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[0045] In embodiments, arithmetic operations are paral-
lelized by utilizing multiple rows and columns of matrix
processor 300 to generate an NxN tile output. For example,
a given row size of 96 and a corresponding column size of
96 facilitate an output of 2*#9216 mathematical calculations.
In other embodiments, the number of rows and columns may
be different. That is, there may be N rows and M columns
and an NxM tile output may be generated. For example, for
a row size of 96 and a corresponding column size of 192, an
output of 2*18,432 calculations is generated in a single
clock cycle.

[0046] FIG. 4 illustrates an exemplary multiply-and-add
circuit implementation of the sub-circuit shown in FIG. 3.
As depicted in FIG. 4, multiply-and-add circuit 400 com-
prises multiplier 430, adder 432, logic 434 436 438, accu-
mulator 424, shadow register 428, and output register 440.
In embodiments, accumulator 424 may be implemented as
an accumulation register.

[0047] In embodiments, accumulator 424 may comprise a
set of ALUs that comprise registers and shadow register 428
that may be configured to receive the outputs of the AL Us.
[0048] Inoperation, multiplier 430 receives and multiplies
weights 402 and data 404 to generate products therefrom.
Each product may be provided to adder 432 that, in response
to receiving the product from multiplier 430, adds the
product to the current value of the accumulator 424.
[0049] In embodiments, accumulator 424 generates an
accumulated value that is stored, e.g., in output register 440.
The accumulated value is the result of a convolution and, as
mentioned with reference to FIG. 2, may correspond to the
dot product of two formatted matrices.

[0050] In embodiments, a copy of the result in output
register 440 may be provided to shadow register 428, which
may output result 450, such that accumulator 424 can be
accessed again to commence new calculations. In embodi-
ments, multiply-and-add circuit 400 in FIG. 4 may perform
a multiplication, an addition operation, and a shift operation
at the same time, i.e., within a single cycle, thereby doubling
the total number of operations that occur each cycle.
[0051] In embodiments, ClearAcc signal 408 clears the
contents of accumulator 424, e.g., when multiplier 430
performs a multiply operation, such that accumulation
operations can start over. In embodiments, ResultEnable
signal 412 is activated in response to a determination that
data 404 is valid. It is understood that accumulator 424 may
accumulate and save data, accumulate and clear data, or just
clear data.

[0052] In embodiments, results are moved from output
register 440 to shadow register 428 in a single clock cycle,
i.e., without the need of intermediate execute and save
operations.

[0053] FIG. 5 illustrates an exemplary convolution opera-
tion according to various embodiments of the present dis-
closure. Convolution 500 comprises input channels IC of
input image 502, weights 532, dot product 514, output
channels OC, and accumulator 540.

[0054] In embodiments, convolution operation 500
applies individual filters (i.e., weights) 532 to input image
502, e.g., to detect small features within input image 502. By
analyzing a sequence of different features in a different
order, macro features may then be identified in input image
502. In other embodiments, input 502 is non-image data. For
example, input 502 may be non-image sensor data, such as
ultrasonic, radar, LIDAR, or other sensor data. Input 502
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may also be general mathematical computations or any other
types of data known to one of skill in the art.

[0055] Convolution 500 may use a different set of weights
532 for each input channel IC, as each input channel IC may
contain a different set of information, and each weight
matrix 532 may be designed to help identify a different
feature. In embodiments, convolution 500 multiplies a rect-
angular input matrix 504 with a rectangular weight matrix
532 to obtain partial dot products. The partial dot products
may then summed by adder 546 in order to generate an
accumulated dot product 514 (i.e., an integer) that represents
an output pixel 514 in the output image.

[0056] In embodiments, each pixel in output channel OC
is generated by multiplier 542 and adder 544. In embodi-
ments, the value of the partial dot products correspond to the
application of weight matrix 532 in its entirety to area 504
of the input image 502. In other words, each weight 532 is
dot multiplied by multiplier 542 with area 504 to produce a
partial dot product, then the partial dot products are accu-
mulated in accumulator 540 to generate an accumulated
output that represents the convolution.

[0057] One or more input channels IC, e.g., one for each
color (e.g., RGB) may be used. For example, each convo-
Iution may use weights 532 that represent three different
matrices, one for each color. Each output channel OC 512
may be generated using a different filter or weight 532 that
represents a different a feature in input data 502. The number
of output channels may depend on the number of features.
The number of convolutions is equal to the number of output
channels OC times the number of input channels IC, and
each convolution may have N convolutions for each input
channel IC. One skilled in the art will recognize that the
number and type of input channels may vary and may
include color and/or clear inputs.

[0058] As depicted in FIG. 5, input matrix 504 is a KxxKy
(i-e., 3x3) matrix that may be combined with a 3x3 weight
matrix 532 across 3 input channels, i.e., 3x3xIC, such that
the depths match and produce a single element, dot product
514, in the output plane. Each dot product 514 in output
channel 512 is the result of a dot multiplication.

[0059] FIG. 6 through FIG. 8 illustrate details of an
exemplary convolution operation according to various
embodiments of the present disclosure. Convolution 600
comprises input data matrix 602, weight data matrix 604,
array 606, and dot product 630. In embodiments, array 606
is a matrix processor architecture as shown in FIG. 2 and
FIG. 3.

[0060] Input data matrix 602 in FIG. 6 comprises column
610 that, in embodiments, may be obtained by linearizing an
input matrix, such as rectangular input matrix 504 shown in
FIG. 5, to obtain a vectorized form of the input matrix.
Similarly, weight data matrix 604 comprises row 620 that
may be a vectorized form of a weight matrix, such as
rectangular weight matrix 532 in FIG. 5. As an example, a
33 input matrix and 3 input channels may be re-formatted
into a vector that comprises 3x3x3=27 elements from which
a 27-element column 610 may be produced for use in input
data matrix 602. Conversely, a 3x3 weight matrix for the
same 3 input channels may be used to generate a 27-element
row 620 for use in weight data matrix 604. One skilled in the
art will recognize that the sizes of input matrices and number
of input channels may vary across different applications.
[0061] In embodiments, the input channels and input
weights drawn as rectangles in FIG. 5 are reformatted, e.g.,
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by the formatter discussed with reference to FIG. 2, into a
vector formats (e.g., vectors having 96 elements) that are
provided to a matrix multiplier/processor (denoted as ele-
ment 240 FIG. 2), such that a 96x96 element dot product
operation can be performed in parallel. In detail, input data
504 and input weights 532 shown in FIG. 5 as rectangles for
each input channel are reformatted into vector formats.

[0062] Inembodiments, the resulting vector formats, illus-
trated in FIG. 6 as input data 602 and input weights 604 (e.g.,
each having comprising 96 elements) are provided to matrix
processor or matrix multiplier 240 that performs a 96x96
element dot product operation in parallel. In embodiments,
in the calculation of output channels, the same output pixels
are produced using the same set of input data but different
set of weights (i.e., filters), such that by reading the input
data once many output channels can be generated at once. As
stated above, it is understood that the number of input and
output channels may be arbitrarily chosen.

[0063] It is further understood that input data matrix 602,
weight data matrix 604, and array 606 may have different
numbers of columns and rows as those depicted in FIG. 6.
In particular, the shapes of input data matrix 602 and weight
data matrix 604 may be formatted such as to accommodate
the columns and rows of any arbitrate configuration of array
606. In addition, in circumstances in which weight data
matrix 604 is known then row 620 may be generated and
stored in a vectorized format without the use of a formatter.

[0064] In embodiments, dot product 630 in FIG. 6 is
generated by dot-multiplying a vector corresponding to
column 610 with a vector corresponding to row 620. In
embodiments, as shown in FIG. 7, the next dot product 632
may be obtained by dot-multiplying a vector corresponding
to column 612 with the vector corresponding to row 620. As
those of skill in the art will recognize, once all dot products
in the first row of array 606 are filled, the dot product of the
second row of array 606 may be calculated by dot-multi-
plying the elements in first column 610 of input data matrix
602 with the second row of weight data matrix 604, etc.

[0065] It is important to note that FIG. 6 through FIG. 8
merely serve illustrative purposes and that the abovemen-
tioned dot-multiplications may be simultaneously performed
to generate a one-shot matrix-matrix multiply operation.

[0066] FIG. 9 illustrates an exemplary deconvolution
operation according to various embodiments of the present
disclosure. Deconvolution system 900 comprises input
channels IC of input image 902, weights 922, dot product
904 906, and output channels OC. A person of skill in the art
will recognize that, the deconvolution operation 900 is, in
effect, is a mathematical transposition (approximately the
inverse) of the convolution operation, for example, the
convolution shown in FIG. 5. One of skill in the art will
further recognize that a neural network may be used to learn
deconvolution operation 900 by applying procedures similar
to those used for ordinary convolutional neural networks.
For purposes of brevity, a description or functions of com-
ponents similar to those in FIG. 5 is not repeated here.

[0067] In embodiments, deconvolution operation 900 in
FIG. 9 reassembles matrices 912 by deconstructing dot
product 904 906 using weights 922. As with a convolution
operation, deconvolution 900 may use a different set of
weights 922 for each input channel IC. In embodiments,
deconvolution 900 may be advantageously applied to an
image to perform image deconvolution, for example to
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improve robustness against artifacts. Other applications may
include analysis and restoration of image data, and the like.
[0068] FIG. 10 illustrates a process for performing arith-
metic operations to accelerate convolutional neural net-
works according to various embodiments of the present
disclosure.

[0069] Process 1000 for performing arithmetic operations
begins at step 1002 when a first set of operands that may be
representative of a row in a data matrix is received from a
first logic circuit. This first set of operands may be vector-
ized such that the operands are aligned with inputs into a
matrix processor. In certain embodiments, the size of the
vectorized operands is directly related to the number of
inputs into a matrix processor along on axis.

[0070] At step 1004, a second set of operands that may be
representative of a column in a weight matrix is received
from a second logic circuit. This second set of operands may
be vectorized such that the operands are aligned within
corresponding inputs into the matrix processor. In certain
embodiments, the size of the vectorized operands is directly
related to the number of inputs into the matrix process along
a different axis.

[0071] At step 1006, the first set of operands is dot-
multiplied with the second set of operands to obtain one or
more dot-products. In certain embodiments, this set opera-
tion across the sets of operands is performed in a single
clock cycle.

[0072] At step 1008, the dot-products may be used to
convolve an image with a filter to produce a convolution
result.

[0073] At step 1010, the convolution result is further
processed to enhance the image output. This further pro-
cessing may occur using a non-linear function, a normal-
ization operation or a pooling operation.

[0074] One skilled in the art will recognize no computing
system or programming language is critical to the practice of
the present invention. One skilled in the art will also
recognize that a number of the elements described above
may be physically and/or functionally separated into sub-
modules or combined together.

[0075] It shall be noted that elements of the claims below
may be arranged differently including having multiple
dependencies, configurations, and combinations. For
example, in embodiments, the subject matter of various
claims may be combined with other claims.

[0076] It will be appreciated to those skilled in the art that
the preceding examples and embodiment are exemplary and
not limiting to the scope of the present invention. It is
intended that all permutations, enhancements, equivalents,
combinations, and improvements thereto that are apparent to
those skilled in the art upon a reading of the specification
and a study of the drawings are included within the true
spirit and scope of the present invention.

1. A matrix processor for accelerating convolutions in a

neural network, the matrix processor comprising:

a first input circuit arranged in a first dimension of a
two-dimensional array, the first input circuit being
coupled to receive N operands from a first logic circuit,
the N operands being formatted in accordance with a
first width related to the first dimension;

a second input circuit arranged in a second dimension of
the two-dimensional array, the second input circuit
coupled to receive M operands from a second logic
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circuit, the M operands being formatted in accordance
with a second width related to the second dimension;
and

a plurality of sub-circuits coupled to receive the N oper-
ands and the M operands, at least a subset of the
plurality of sub-circuits comprising an arithmetic logic
unit, an accumulator and a shadow register, the sub-
circuits coupled within the two-dimensional array to
perform an arithmetic operation on the N operands and
the M operands.

2. The matrix processor according to claim 1 wherein the
arithmetic operation is a dot product calculation associated
with a convolution operation.

3. The matrix processor according to claim 2 wherein the
arithmetic logic unit comprises a multiply-and-add circuit to
generate the dot product.

4. The matrix processor according to claim 1 wherein the
N operands represent image data and the M operands
represent weight values.

5. The matrix processor according to claim 1 wherein at
least some of the sub-circuits comprise an encoding element
configured to encode values representing one or more of the
M operands.

6. The matrix processor according to claim 5 wherein the
encoding element is a booth encoder.

7. The matrix processor according to claim 1 wherein the
N operands are formatted from a data input matrix.

8. The matrix processor according to claim 1 further
comprising a state machine that uses at least one of a filter
size and a stride to determine reusable operands within the
N operands or the M operands.

9. The matrix processor according to claim 1 wherein
accelerated processing speed is achieved by a reduction in
read operations from a cache and accelerated data through-
put via the plurality of sub-circuits.

10. A system for accelerating convolutions in a neural
network, the system comprising:

a first logic circuit that generates N operands;

a first input circuit arranged in a first dimension of a
two-dimensional array, the first input circuit being
coupled to receive the N operands from the first logic
circuit;

a second logic circuit that generates M operands;

a second input circuit arranged in a second dimension of
the two-dimensional array, the second input circuit
being coupled to receive M operands from the second
logic circuit;

a matrix processor comprising a plurality of sub-circuits,
the plurality of sub-circuits configured to perform dot-
multiplications of the N operands and the M operands
to generate dot-products; and

an output array coupled to the two-dimensional array, the
two-dimensional array configured to use the dot-prod-
ucts to generate a result.

11. The system according to claim 10 wherein the N
operands are formatted from a data input matrix into a first
vector and the M operands are formatted from a weight input
matrix into a second vector.

12. The system according to claim 11 wherein the first
logic circuit comprises a plurality of data registers that store
the N operands, the plurality of data registers having a first
width corresponding to the first dimension of the two
dimensional array and the second logic circuit comprises a
plurality of weight registers that store the M weight oper-
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ands, the plurality of weight registers having a second width
corresponding to the second dimension of the two dimen-
sional array.

13. The system according to claim 12 wherein the first
width corresponds to a number of cycles that generate the
result.

14. The system according to claim 12 wherein the data
register and the weights register are accessed only once to
fetch respective a first and second number of elements.

15. The system according to claim 10 wherein the sub-
circuits comprise shadow registers configured to move data,
in one or more clock cycles, to a shift register.

16. The system according to claim 10 further comprising
a buffer coupled to at least one of the data input matrix and
the weight input matrix, the buffer stores a copy of recently
used data to enable reuse without refetching in subsequent
cycles.

17. The system according to claim 10 wherein the result
is an output matrix that corresponds to an application of a
filter to an area of an image.
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18. The system according to claim 10 further comprising
a state machine that uses at least one of a filter size and a
stride to identify reusable data.

19. A method for using a matrix multiplication circuit to
make convolutional neural networks faster, the method
comprising:

receiving, from a first logic circuit, a first set of operands

representative of a row in a data matrix;

receiving, from a second logic circuit, a second set of

operands representative of a column in a weight matrix;
dot-multiplying the first set of operands with the second
set of operands to obtain one or more dot-products; and
using the dot-products to convolve an image with a filter
to produce a convolution result.

20. The method according to claim 19 wherein convolv-
ing the image comprises processing the one or more dot-
products by a convolution layer to generate a layer output.

21. The method according to claim 20 wherein generating
the layer output comprises applying one of a non-linear
function, a normalization, and a pooling to the convolution
result.



