TMC is an independent, primarily volunteer organization that relies on ad revenue to cover its operating costs. Please consider whitelisting TMC on your ad blocker and becoming a Supporting Member. For more info: Support TMC

"Direct carbon" fuel cells

Discussion in 'Energy, Environment, and Policy' started by doug, Sep 1, 2009.

  1. doug

    doug Administrator / Head Moderator

    Nov 28, 2006
    Is There Some Light at the End of Coal's Long, Dark Tunnel? -
  2. TEG

    TEG TMC Moderator

    Aug 20, 2006
    #2 TEG, Sep 1, 2009
    Last edited: Sep 1, 2009
    Isn't what we need just the opposite? A machine that uses electricity (from Solar/Wind/Wave/Geotherm) to get CO2 from the air and turn it into some coal like substance so we can bury it again to re-sequester it? :confused:


    I guess the coal industry wants more research dollars to investigate alternate ways to process coal one way or another.

    It seems like all the pre-processing to purify, clean, and heat the coal based slurry would use up a lot of the energy such a device would produce.
  3. JRP3

    JRP3 Hyperactive Member

    Aug 20, 2007
    Central New York
    Not to mention coal mining itself is pretty destructive.
  4. doug

    doug Administrator / Head Moderator

    Nov 28, 2006
    #4 doug, Sep 1, 2009
    Last edited: Sep 1, 2009
    While I appreciate your sentiment here, I think I already said elsewhere earlier today that this is a poor way to reduce the amount of CO2 in the atmosphere. By volume, the concentration of atmospheric CO2 is 387 ppm. While that number is alarming to climate scientists, it's still less than 0.04% of the atmosphere.

    You're far better off grabbing that CO2 at the point of production, before it is diluted in the air. Better yet, reduce the level of CO2 exhaust by increasing efficiency. And obviously better still, generate electricity in a way that is carbon free or at least carbon neutral.

    For example, "clean coal" is an oxymoron, but practically speaking (since we will continue to use coal for the near future) there is such a thing as cleaner coal. (Reducing NOx and particulates is a good thing.) Increasing efficiency should correspondingly reduce emissions and usage. I prefer we move away from fossil fuels all together, but while we're transitioning to renewables, we should use those fossil fuels in the least destructive and most efficient way that's practical. I find most carbon sequestration schemes dubious, but if you're going to do it, it's at the output of the power plant.

    Nevertheless, without knowledge of the details, it is possible that preparing coal for use in DCFCs may not provide an energy advantage. There could, however, be other advantages (NOX and particulates again, or ease of carbon capture).

    Anyhow, it's the use of biomass as a feedstock that interests me:
    If practical, it would be cool if DCFC plants could be used in conjunction with agribusinesses. Waste biomass could be used to generate electricity. The exhaust CO2 could be pumped into green houses (or used help grow fuel algae or some other plant material). I prefer CO2 reuse to sequestration.

    Carbon Management Program: Direct Carbon Fuel Cells

    Direct carbon fuel cell - Wikipedia, the free encyclopedia
  5. Serge

    Serge Member

    Jul 24, 2008
    Queens, NY
    While reducing the amount of CO2 in the atmosphere is something we should focus in the long-term, the current [short-term] challenge is to reduce the amount of new CO2 being pumped into atmosphere.

    This is unfortunately, the uncomfortable truth. While the proportion of clean-energy production is growing [and should be stimulated further], new coal-burning plants are still being built, even if to replace the older ones. Hopefully this technology can provide an alternative to this part of the energy production equation. In addition to higher efficiency an additional benefit is ability to better contain pollutants (mercury, sulfur-oxide, etc.) instead of venting them out the smokestack.
  6. frenska

    frenska New Member

    Feb 2, 2010
    flow rate calculation for DMFC

    I'm trying to calculate the flow rates (MeOH and O2) for a 5cm2 DMFC.

    I've already found out that the MeOH flow is 0.52ml/min.
    Considering the stoichiometry of the reaction CH3OH +3/2 O2 -> CO2 + H2O
    I've calculated the moles of O2 8.64e-6mol/s.

    So I've simply to determine the flow in ml/min. It shouldn't be a big deal but I'm not sure if:
    a) I should use the gas law PV=nRT
    b) I can simply use the molecular weight and the density of O2

    Thanks for your help
  7. johnr

    johnr Member

    Apr 14, 2009
    I vote for "clean coal" for the 2009 oxymoron of the year award!:biggrin:

Share This Page

  • About Us

    Formed in 2006, Tesla Motors Club (TMC) was the first independent online Tesla community. Today it remains the largest and most dynamic community of Tesla enthusiasts. Learn more.
  • Do you value your experience at TMC? Consider becoming a Supporting Member of Tesla Motors Club. As a thank you for your contribution, you'll get nearly no ads in the Community and Groups sections. Additional perks are available depending on the level of contribution. Please visit the Account Upgrades page for more details.