Welcome to Tesla Motors Club
Discuss Tesla's Model S, Model 3, Model X, Model Y, Cybertruck, Roadster and More.
Register

NHTSA crash tests results/videos

This site may earn commission on affiliate links.
What I'm most curious about is the roof crush test. The Tesla has a high curb weight, so it will have to withstand a lot of crush force in order to get IIHS' top rating (I think a rating of "Good" requires something like 4x or more the weight of the car).
Good point there. One hopes that Tesla also did their homework in this area.
 
Last edited by a moderator:
In addition to the "swerve around the moose" test, there also is a "survive head on collision with the moose" test.

image.jpg


I think this was a voluntary test done by SAAB and Volvo, so we may never see results for the Model S.

GSP
 
The crash test videos are a testament of the build quality of the Model S. I think the automotive community may find issue on how well the "S" held up during these tests but it means that all "S" owner can rest assured that they are driving one of the safest cars on the road. Two thumbs up yet again TM.
 
I wonder if the car could detect the front end impact and immediately throw the car in reverse!!!.

The damn thing goes so fast from 0-3 seconds that even a second (or fraction of) in reverse potentially could decrease the impact!

lol....if only all of us MS owners could be thrown in a room together and be in charge of designing a car from the ground up! We would give even Tesla a run for their money ;)

I like how the drive wheels keep spinning after impact. ;) Motor is just fine back there apparently!

- - - Updated - - -

That side impact test makes the Model S look like a beast -- I think the side impact machine hurt after that one. ;)
 
I don't think the mirror should break loose like that, but I can't say I know for sure. What I do recall are several incidents around here where people have been killed or seriously injured by things like flying cell phones and laptops when cars are involved in accidents. One example here.

It is completely reasonable that the rear mirror snaps off in Model S on side impact when it does not in other cars. The passenger cabin is much stronger, resulting in less pole intrusion length. The same delta in velocity is reached in far less distance, hence higher acceleration.
Next, the mirror and the front passengers' heads are flying in the same direction, relative to the cabin, when impact forces start to act. No initial collision possible. It would be worse for the passenger riding shotgun to whack her head into a rigid mirror in the first place.

Lastly, we have a mirror flying around in the cabin. There seems to be a retention leash that would limit the free flight length to a distance that reduces risk of hitting the driver. If this doesn't work out, the mirror could impact the driver's head with a velocity that is lower than the car going sideways due to impact. Remember, it shed some energy snapping off.

All things considered, a mirror with a carefully designed snap-off behavior appears much safer to me.

BTW what about all these toll transponders that owners glue to the windscreen near the mirror. If you get safety concerns seeing stuff flying around in a car crash video, better find a safer spot to install these.

<stepping down from physics soap box/>
 
Simply astonishing. After watching these videos I have no doubt there are Model S owners who will owe their life and the lives of their loved ones to the brilliant engineering of the Model S. I agree with Elon's comment at Teslive, that the safety features of the Model S have not been given the accolades they rightly deserve.

Most of us believe that Tesla has created a car that is life-changing. We should also celebrate the fact that the Model S is lifesaving.
 
Tesla Model S Achieves Best Safety Rating of Any Car Ever Tested
Sets New NHTSA Vehicle Safety Score Record

PALO ALTO, CA -- (Marketwired) -- 08/19/13 -- Independent testing by the National Highway Traffic Safety Administration (NHTSA) has awarded the Tesla Model S a 5-star safety rating, not just overall, but in every subcategory without exception. Approximately one percent of all cars tested by the federal government achieve 5 stars across the board. NHTSA does not publish a star rating above 5, however safety levels better than 5 stars are captured in the overall Vehicle Safety Score (VSS) provided to manufacturers, where the Model S achieved a new combined record of 5.4 stars.
Of all vehicles tested, including every major make and model approved for sale in the United States, the Model S set a new record for the lowest likelihood of injury to occupants. While the Model S is a sedan, it also exceeded the safety score of all SUVs and minivans. This score takes into account the probability of injury from front, side, rear and rollover accidents.
The Model S has the advantage in the front of not having a large gasoline engine block, thus creating a much longer crumple zone to absorb a high speed impact. This is fundamentally a force over distance problem -- the longer the crumple zone, the more time there is to slow down occupants at g loads that do not cause injuries. Just like jumping into a pool of water from a tall height, it is better to have the pool be deep and not contain rocks. The Model S motor is only about a foot in diameter and is mounted close to the rear axle, and the front section that would normally contain a gasoline engine is used for a second trunk.
For the side pole intrusion test, considered one of the most difficult to pass, the Model S was the only car in the "good" category among the other top one percent of vehicles tested. Compared to the Volvo S60, which is also 5-star rated in all categories, the Model S preserved 63.5 percent of driver residual space vs. 7.8 percent for the Volvo. Tesla achieved this outcome by nesting multiple deep aluminum extrusions in the side rail of the car that absorb the impact energy (a similar approach was used by the Apollo Lunar Lander) and transfer load to the rest of the vehicle. This causes the pole to be either sheared off or to stop the car before the pole hits an occupant.
The rear crash testing was particularly important, given the optional third row children's seat. For this, Tesla factory installs a double bumper if the third row seat is ordered. This was needed in order to protect against a highway speed impact in the rear with no permanently disabling injury to the third row occupants. The third row is already the safest location in the car for frontal or side injuries.
The Model S was also substantially better in rollover risk, with the other top vehicles being approximately 50 percent worse. During testing at an independent facility, the Model S refused to turn over via the normal methods and special means were needed to induce the car to roll. The reason for such a good outcome is that the battery pack is mounted below the floor pan, providing a very low center of gravity, which simultaneously ensures exceptional handling and safety.
Of note, during validation of Model S roof crush protection at an independent commercial facility, the testing machine failed at just above 4 g's. While the exact number is uncertain due to Model S breaking the testing machine, what this means is that at least four additional fully loaded Model S vehicles could be placed on top of an owner's car without the roof caving in. This is achieved primarily through a center (B) pillar reinforcement attached via aerospace grade bolts.
The above results do not tell the full story. It is possible to game the regulatory testing score to some degree by strengthening a car at the exact locations used by the regulatory testing machines. After verifying through internal testing that the Model S would achieve a NHTSA 5-star rating, Tesla then analyzed the Model S to determine the weakest points in the car and retested at those locations until the car achieved 5 stars no matter how the test equipment was configured.
The Model S lithium-ion battery did not catch fire at any time before, during or after the NHTSA testing. It is worth mentioning that no production Tesla lithium-ion battery has ever caught fire in the Model S or Roadster, despite several high speed impacts. While this is statistically unlikely to remain the case long term, Tesla is unaware of any Model S or Roadster occupant fatalities in any car ever.
The graphic below shows the statistical Relative Risk Score (RSS) of Model S compared with all other vehicles tested against the exceptionally difficult NHTSA 2011 standards. In 2011, the standards were revised upward to make it more difficult to achieve a high safety rating.
ABOUT TESLA
Tesla Motors' (NASDAQ: TSLA) goal is to accelerate the world's transition to sustainable transport with a full range of increasingly affordable electric cars. California-based Tesla designs and manufactures EVs, as well as EV powertrain components for partners such as Toyota and Mercedes. Tesla has delivered over 15,000 electric vehicles to customers in 31 countries.
Tesla Communications
Email Contact
Source: Tesla Motors, Inc.

 
Safest car ever

If there's any justice, this should move the dial a little tomorrow. Amazing results, and superbly announced.

Tesla Model S Achieves Best Safety Rating of Any Car Ever Tested
Sets New NHTSA Vehicle Safety Score Record

PALO ALTO, CA -- (Marketwired) -- 08/19/13 -- Independent testing by the National Highway Traffic Safety Administration (NHTSA) has awarded the Tesla Model S a 5-star safety rating, not just overall, but in every subcategory without exception. Approximately one percent of all cars tested by the federal government achieve 5 stars across the board. NHTSA does not publish a star rating above 5, however safety levels better than 5 stars are captured in the overall Vehicle Safety Score (VSS) provided to manufacturers, where the Model S achieved a new combined record of 5.4 stars.
Of all vehicles tested, including every major make and model approved for sale in the United States, the Model S set a new record for the lowest likelihood of injury to occupants. While the Model S is a sedan, it also exceeded the safety score of all SUVs and minivans. This score takes into account the probability of injury from front, side, rear and rollover accidents.
The Model S has the advantage in the front of not having a large gasoline engine block, thus creating a much longer crumple zone to absorb a high speed impact. This is fundamentally a force over distance problem -- the longer the crumple zone, the more time there is to slow down occupants at g loads that do not cause injuries. Just like jumping into a pool of water from a tall height, it is better to have the pool be deep and not contain rocks. The Model S motor is only about a foot in diameter and is mounted close to the rear axle, and the front section that would normally contain a gasoline engine is used for a second trunk.
For the side pole intrusion test, considered one of the most difficult to pass, the Model S was the only car in the "good" category among the other top one percent of vehicles tested. Compared to the Volvo S60, which is also 5-star rated in all categories, the Model S preserved 63.5 percent of driver residual space vs. 7.8 percent for the Volvo. Tesla achieved this outcome by nesting multiple deep aluminum extrusions in the side rail of the car that absorb the impact energy (a similar approach was used by the Apollo Lunar Lander) and transfer load to the rest of the vehicle. This causes the pole to be either sheared off or to stop the car before the pole hits an occupant.
The rear crash testing was particularly important, given the optional third row children's seat. For this, Tesla factory installs a double bumper if the third row seat is ordered. This was needed in order to protect against a highway speed impact in the rear with no permanently disabling injury to the third row occupants. The third row is already the safest location in the car for frontal or side injuries.
The Model S was also substantially better in rollover risk, with the other top vehicles being approximately 50 percent worse. During testing at an independent facility, the Model S refused to turn over via the normal methods and special means were needed to induce the car to roll. The reason for such a good outcome is that the battery pack is mounted below the floor pan, providing a very low center of gravity, which simultaneously ensures exceptional handling and safety.
Of note, during validation of Model S roof crush protection at an independent commercial facility, the testing machine failed at just above 4 g's. While the exact number is uncertain due to Model S breaking the testing machine, what this means is that at least four additional fully loaded Model S vehicles could be placed on top of an owner's car without the roof caving in. This is achieved primarily through a center (B) pillar reinforcement attached via aerospace grade bolts.
The above results do not tell the full story. It is possible to game the regulatory testing score to some degree by strengthening a car at the exact locations used by the regulatory testing machines. After verifying through internal testing that the Model S would achieve a NHTSA 5-star rating, Tesla then analyzed the Model S to determine the weakest points in the car and retested at those locations until the car achieved 5 stars no matter how the test equipment was configured.
The Model S lithium-ion battery did not catch fire at any time before, during or after the NHTSA testing. It is worth mentioning that no production Tesla lithium-ion battery has ever caught fire in the Model S or Roadster, despite several high speed impacts. While this is statistically unlikely to remain the case long term, Tesla is unaware of any Model S or Roadster occupant fatalities in any car ever.
The graphic below shows the statistical Relative Risk Score (RSS) of Model S compared with all other vehicles tested against the exceptionally difficult NHTSA 2011 standards. In 2011, the standards were revised upward to make it more difficult to achieve a high safety rating.
ABOUT TESLA
Tesla Motors' (NASDAQ: TSLA) goal is to accelerate the world's transition to sustainable transport with a full range of increasingly affordable electric cars. California-based Tesla designs and manufactures EVs, as well as EV powertrain components for partners such as Toyota and Mercedes. Tesla has delivered over 15,000 electric vehicles to customers in 31 countries.
Tesla Communications
Email Contact
Source: Tesla Motors, Inc.